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Abstract - In this paper the asymptotic behavior of the discrete mini-
mum variance output feedback control law is investigated. It is shown
‘ that this control law results in an usymptotically stable closed-loop
system. For time invariant systems, the output feedback gain tends to

a periodic function of time which i1s easier to implement in the feed-

back loop.ﬁr
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I. INTRODUCTION [Tist._ AVAIL_ 00/or SPLCIAL]

A

Consider the stochastic linear time-varying system Sz whose output can

only be measured at discrete instants of time and is given by

k(t) = F(t)x(t) + G(t)u(t) + D(t)w(t) (1)

y(e) = H(e)dx(t)) + v(t))

where F(t), G(t), and D(t) are nxn, nxr, and nxp continuous matrices;
w(t), the disturbance in the dynamics is a stochastic process with a
gaussian distribution whose first- and second-order statistics are

given by
Efw(t)] = 0; E[w(t)w'(n)] = Q)6 (t - 7) (2)
where Q(t) is a continuous positive semidefinite pxp matrix and § (.) is

the Dirac delta function. Similarly [v(ti), i=0, 1, ... ] is an

m-dimensional gaussian white sequence for which
E[v(t)] =0;E [v(ti)v(tj)] = R(t) 6 (3)

where R(ti) is a positive definite mxm matrix. The initial state x(to)

of system Sz is assumed to be a random variable for which

E [x(co)] = 0; E[x(to)x'(to)] = I (4)




Furthermore assume that for all t > to and ti

E [w(t)v'(ti)] = E [w(t)x'(to)] = E [V(ti) x'(to)] =0 (5)

Let the class of admissible controls l%, be the set of linear functions

of the current output measurements, which is given by

£ r_ < : E 4
U, =[uerr = u[t,y(t:i)] = C(B)y(t) ; t <t<t ,1=0,1,...N-1 (6)

Then it was shown in reference [1] that the control law

u*(t.y(ti)) = -G'(t) & '(t,t) W'l(ti,t1+1) E*kti)H'(ti)[H(ti)
Ze (e + R(ed ] " ycey) (7)

where

Ze ) =0 (et (25 - 2% pmrce) (e ZRepme(e)

+ R(ti)] “k H(E,) 2*(t1)] ®'(t,,0.t) +Q(E ) (8)
with
ZHe) =I5 QUt,, Lty - /::(:1 t)D(t) Q(t)D'(t)d'(t,  ,t)dt
¢ ° iIs1%4 i+1’ i+1°’
and Ei
141
w(ti’tiﬂ) = [ «b(ti,t) G(t) G'(t) ®'(t,,t) de 9
L '

minimizes the cost function

J(u) = 1/2 E [x'(t x(e, )] 1=0,1, ..., 81 (10

L)
141 Si41 54
subject to the constraints and assumptions (1) - (6), provided that

VV(ti,t1+l) is invertible.

sl
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The objective of this paper is to present some of the asymptotic prop-
erties of the discrete minimum variance output feedback control law (7)
and to show that the resultant closed-loop system is asymptotically
stable in the sense of Lyapunov. It should be noted however, that the
results developed in this paper, make use of the properties of the co-
variance equation (8) of the closed-loop system, which have been widely
investigated in the literature [2], [3], [4] , and [5], in connection
with the Kalman filter. Before proceeding, it will be assumed through-

out the following that the assumptions

(A.1) Ud(t,8)ll < a 3(lc - s]) Vt and s (11)
(A.2) O<o 1I < W(ti,t“_l) < 0’21 < ® Vi (12)
k-1
]
Bk MR A BT e Yty
Spl<m Vk 2 N (13)
- -1
] ]
(A.4) 0<y,Is I &'(e,e)H' ()R "(t)H(t)(t,,¢t,)
1=k-N
sy,l<w vk 2 N (14)

are satisfied for some real a,, a,, 9,, ﬁl' F32. Yl’ and YZ'




II, STABILITY OF THE DISCRETE MINIMUM-VARIANCE

OUTPUT FEEDBACK CONTROL SYSTEM

In this section the asymptotic stability of the discrete time minimum
variance closed-loop system will be investigated in the case when no
noise or disturbances are present in the measurements or the dynamics.

To be specific, let the system under consideration be given by

x(t) = F(t)x(t) + G(t)u(t) (15)

y(t;) = H(e )x(ty)

and let u(t) be given by

u(e) = u*(t,y(ti))= -G'(t) (b'(ti.t)W'l(ci,c ) z*(ti)u'(ti)

i+1
[uce) Z5epnte) + rep]™h yie) (16)

For this control law the state at the sampling times is given by

X(ti+1) - Q(ti""l’:i) {I = 2*(ti)ﬂl(ti)[ﬂ(t1) 2*(ti)ﬂ'(t1)
+ R(e)) ThHCe) ) x(e)) (17)

The objective of this section is to show that starting from any initial
condition x(to). the state of the closed-loop system (17), x(ti),tends

to zero as t1 approaches infinity,

*
Let P (t1+1) be given by




Pt = {2e) - Z(e 00 )1 uee) 27 Y0 k)
+ R(t)) ]°1H(ti) 2*(t1)} (18)

*
Then it was shown in references [2] and (3] that P (t,, .) is bounded

i+1

from above and below for every i, provided assumptions (A.3) and (A.4)

are satisfied. These results are summarized in the following lemma.

Lemma 1: (Deyst and Price) If assumptions (A.3) and (A.4) are satis-

%
fied, then P (t1+1) is bounded from above and below for every i by

B NY2B
fomkn Y3 5 P 3 {L 4 =22 2% 1 (19)
1+ B,y i+1 Y, 2
1" 2 ’)’2

Theorem 1: Assume that (A.1) through (A.4) are satisfied, then the
discrete time closed-loop system (17) is uniformly asymptotically

stable in the large and

-1

*
Vix(e  )atig) = xi(e ) @' (et P (g et ty x(E )

(20)

*
is a Lyapunov function, where P (ti+1) is given (18)
Proof: Using assumption (A.1), it can be easily deduced that

-2 2
a3 ey = &) 5 @'(e,e, )0(8,8) 5 ag(le,, - g]) @D




Furthermore, from (21) and (19) it can be deduced that for all ti

2 59
{ Yoo
2
Y2 + Ny

, 1
5 s o'(e,e, )P (tgppele e ) s
192

1+ ﬁlvl)
B1

{

05}1 (22)
Hence V[x(t1+1),ti+1] is uniformly bounded from above and below for

every ti’ i.e., there exist continuous nondecreasing scalar functions

6, [ [Ix(t;,)||1 and 52[ I x(ty ;) | ] such that 6,(0) =6,(0)=0and

o silllxCe DI s VExCe Due g1 s sl xCey ) 1)

< Vti (23)

Hence (20) is a Lyapunov function. To show that (17) is uniformly
asymptotically stable in the large, we need to show [6], that for some
finite N, there exists a negative definite function 53[”x(ti+1)H]

such that Vti > CN

VixCe )t ] - VI st o1 s sl e DI < 0 (20

Consider the function .
“

-1

" *
vlxe IR, PP (e )8 e )x(E L)

1+1)"1+1] = x(t

Substituting for x(t1+1) from (17) we get




] 2 x~1 * x~1
VlxCe ot 0] = ') 27 (2P (e, )2 (t,)x(t,;)

4
a x'(ti)E* (£)x(E) = ' (£ DB (L)) [H(t:i)x*(ti)

H'(e,) + R(E,)] -IH(ti)x(ti) (25)

Since

Z¥(e,) =@ (e e, DPN(E )@ (e, )+ Qe Lty ) (26)

it follows that

* * .
Z (k)2 ®(ey e, P(e )P (et ) (27)
from which it can be deduced that
%1 w1
]
®'(t, _1,t)P (ti)é(ti_l.ti) z2 X (t)) (28)

?rom (28) and (25) we have

VhxCeg)ae 0] = Ve ,e ] - xiepnice) [H(ti)Z*(ti)H'(ti) |

+ R(ti)]'lu(ti)ic(ti) (29)

Repeating the above for k = i-1, ..., 1-N we get




it tptretrmens el e

i-N
weee, vk b - viate e T 5w k};ix'(ck)u'(tk) [H(e) 27 (e

=1
H'(5) +R(E) ] H(E)x(E,) (30)

(8

From (26) we have

[R(e) + HCe) 2R (eH (6D ] = {R(e) + u(e) [ @ (e e, P (e
@' (t,t ) +QJH'(g)} (31)

*
M )
and since Q(tk,tk_l)P Ftk)é (tk,tk_l) is bounded from above for all k,

it can be deduced from (31) that there exists an 7 > 0 such that

[R(e) +u(e) =¥ (epu(e] = | R(E) + nH(EH'(£) ] < w (32)

Using (32) in inequality (30) we get

i-N
VIt )st ] - ViIx(e _,e, ] s -&gix‘(tk)ﬂ‘(tk) [R(t,)

-1
+ nH(tk)H'(tk)] H(tk)x(tk) (33)

Since (A.4) implies that (15) is discrete time observable and since
observability is invariant under output feedback control laws, it fol-
lows that the right hand side of (33) is strictly less than zero. Hence
there exists a ' 63[||x(t1+1)||] such that (24) is satisfied, from

which it can be concluded that (17) is asymptotically stable in the large.

QED




Remark 1: Assumptions (A.1) and (A.2) are equivalent to the assump=
tion that system (17) is uniformly completely controllable and is
needed to ensure the uniform boundedness of the control law (16) for

all t, and that of w(ti,t ) for all i.

141

ITII. ASYMPTOTIC BEHAVIOR OF THE DISCRETE MINIMUM - VARIANCE

OUTPUT FEEDBACK CONTROL LAW

In this section the steady state behavior of the discrete minimum =
variance output feedback control law (16) is considered. The results
developed make use of the properties of the discrete matrix Riccati
equation, which has been widely investigated in the literature [2] -

[5].

Leti:(ti) be the resulting state covariance of the closed-loop system

for any admissible control

u(t,y(t;))= K(e) y(t,)

Then the recursive relation that determines Z (ti)’ is given by

E(t1+1) =¢»(t1+1,t1) (1+ K(ti)ﬂ(ti)\ ) (ti) [1+ K(ti)H(ti)] g

't 1,t) + & (1t JR(EDR(EDKRIE) ' (E 1 8) + Qe € 1) (35)

“where

T(t) =%,

(36)




and

i+l
K(t;) = ] Q(ti,t) G(t)K(t) dt (37)

Lemma 2: Assume that

W( >0 (38)

tyo i)

*
Then the control law u (t, y(ti))as given by (16) minimizes the state

covariance of the closed-loop system at the sampling time.

Proof: We would like to show that for any u(t, y(ti)) eUg

*
Tl = B ) {0, 0= (39)

*
where Z(ti) and Z (ti) are given by (35) and (8) respectively. Assume

for now that for some i
: %k
z(t) 2 Z (t)) (40)
*
and let K (ti) be given by
* * , ; o Mt &4
K(e)) = Z (e B (e )[H'(e)) T (e )H(E) + R(t,) ] (41)

then it follows from assumption (40) that

0 b . 55 TR N




S TR —

e T G o i

E(ti+1) E- ) (tHl,ti) [1+ K(ti)H(ti)] Z*(ti) [I + K(ti)H(ti)]'

® (e 10 8y) +@(E L R DR(E K (£)8 (€, 0t + Qey,t, )

> E*(t“_l) +¢(ti+1,ti)2*(ti)!{'(ti) [u(t,) :*(:i)u'(ci)
+R(e) T THED T () @1 (e, e + 8 (e, e IRCEDTHCE)

& ' ' '
b (ti)H (ti) + R(ti) 1K (ti)<1> (t:i+1,ti)

+ & (ti_l_l,ti)l((ti)ﬂ(ti) 2*(ti) ‘P'(tH_l,ti)

+ 9 (e, 0,80 D (e JRVGE IR (L) BCE,, b))

* % % g
2T (k) + @ty ,e) TR(E) + Ki(e) ] [H(E) (e )H'(x))

+ R(ti) ] [K(ti) + K*(ti) Jo <I>'(ci+1,t1)

b i

{8y (42)

*
Since X (to) - X (to) = 20, assumption (40) is satisfied for t, and

it follows from (42) that for any u [¢t, Y(ti)] eUc

z(e) = 2(ey)

and (39) follows by induction on 1.
QED

o J1



——————

et

It should be noted that lemma 1 is a generalization of the results
*
presented in reference [l] , where it was shown that u (¢, y(ti)] mini-

mizes the trace of the state covariance at the sampling times.

*
A basic assumption that was used in showing the optimality of u [t,y(ti)]
is the a priori knowledge of the initial covariance of the state E(to).
In the sequel it will be shown that if assumptions (A.1l) through (A.4)
*
x

are satisfied, then the steady state behavior of X (ti) is independent

of lj(to).

*
Let ¥ (t,,t , ¥ ) denote the optimal value of the state covariance
i’ o o

* \ *
¥ =l %
matrix, starting from the initial value X (to) 10, and let ¢c(ti+1'

=
ti’ _0) given by

* 3 - - . Y
@ (bt B) = @t ,t) [1 -K (e, -O)H(ti)] (43)

*
Where K (ti’ So) is given by (41).
Then by simple matrix manipulations it can be shown that

* «W X * *,
¢C(tl+1’t1'0) [ - (ti'to, ‘\-o) s “" (tiito)o)] ¢ c (t1+1)ti’0)

e . * * P
Tt gty T 5 T o(t .t ,0) + [Ki(e, ¥) - K(t,,0)]

~* ' * . » * ]
“’(‘x) b (ci,to,O)H (t)) + n(ci)l [K (ts £) = K (ti.O)l

(44)




T RN

from which it can be deduced that

* * * *
» -
® (k00800 {X°(e 6,5 - £7(e e ,0} @ (e, o,t,,0)
* *
LR (ti+1’to’zo) -z (t1+1’to’0) (45)
Applying the above inequality repeatedly we get

<I>~k s i * Lo 3 * o
(14175579 Te e e ) 2 (t1410800 2 =2 (£14,t,,0)

Since assumptions (A.1l) - (A.4) are satisfied it follows from theorem 1,

that there exist positive real numbers a, and @, such that

1 2
-a_ |t =t
* 2 51 " Sl
|ld>c(c1+1,t:o,0) I = a, e (46)
Hence
1im {3z * ¥y 9} <o 47
- (ti+1’to’ 0) 3 (t1+1’to’ = (47)

£t —=m
(8]
But since 2(3 > 0, it follows from lemma 2 that

* *
3 (t1+1,t°, 20) - 3 (ti+1'to'°) 2 0 M t, and €, (48)

From (48) and (47) it can be deduced that




.k : * -
e {3 (bt 25 = T (e, €,00} =0 (49)

t =
(o]

% ok
Since X% (ti+1’to’ 20) and X (t ,0) are bounded from above and

141* 5
below it follows that

* ~ %
£ A v
t, 20) = lim 2 (ti+1,to,0) a 3 (ti+1) (50)

t = t ==
o o

Applying the above results to the problem under consideration we get:

i. Theorem 2: If assumptions (A.1)-(A.4) are satisfied then the output

feedback control law

uN(e, y(£)) = = 61 @' (e, 0 W e e, ) S e mN () {H(e)

~* ' =1
Z (e IR () +R(ED} T y(e) (51)
minimizes
' S «
lim E {x(ti+1)x (t1+1)} 2 1lim E.(ti+1,t°, _o)

H t -=0 t —-=
{ & (o] o]

? subject to the constraints (1) - (6).




XMty =00t {57 - ¥ mce)) fuce,) S e u(ey)

1

+Re)} e e orce L) ol L) (52)

/4

’ %
(to) =0

L

In the time invariant case where the output measurements are sampled
at a constant interval T, the matrices F, G, H, Q and R are independent

of time, it can be shown [4 ], that

*

Sas * &
£ z,o) = 1lim Z (t J0) = & (53)

i+1’to

t - t =
(o] (o]

~ %
where = 1is the positive definite solution to the equation
~ %k ~ %k o~k ~ ok = ~ %
¥ cem {S¥-F"%{n T +r} " S }o'(T) + Q@  (54)

In this special case assumptions (A.1l) - (A.4) reduce to

(A.1)° {F, G} is a controllable pair
(A.2)' {®(T),H} 1is an observable pair

(A.3)' {#(T),c} 1s controllable, where Q = CC'

and we have the following theorem:

Theorem 3: Assume that (A.1)' - (A.3)' are satisfied, then the periodic

output feedback control law

-15-



e 2

WFee, y(m) = -6t e (e, kWD S T {u¥ e + v}y k)

K os & <(k+1)T, kmk,k +1,.... (55)
minimizes
lim E {x(kT)x'(kT)} € lim 3 (kT,k_, Z) ; (56)
k -~ k —=-x
o (o]
where
T
- . 1
w(T)=[eFtGG'eFtdt (57)

o

e i
and ¥  is the positive definite solution of the matrix equation (54).

Furthermore the resultant closed-loop system is asymptotically stable

in the sense of Lyapunov.

The proof of the above theorem is similar to that of theorem 2 and hence

will be omitted.




IV, CONCLUSION

The discrete minimum variance output feedback control law considered
in this paper results in an asymptotically stable closed-loop system.
Hence besides its optimality, this control law can be used in stabili-
zing linear systems by output feedback. The assumptions that were
made in establishing the asymptotic properties of the control law are
standard ones. Under these assumptions, the control law minimizes the
steady state value of the state covariance at the sampling times, re=-
gardless of the assumed value of the system initial state covariance.
In the time invariant case, the output feedback gain approaches a

periodic function of time, which is easier to compute and implement.

17 »
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